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Abstract

A method of global–local analysis is developed for quasi-static equilibrium problems for granular media. The two-

scale modeling based on mathematical homogenization theory enables us to formulate two separate boundary value

problems in terms of macro- and microscales. The macroscale problem governs the equilibrium of a global structure

composed of granular assemblies, while the microscale one is posed for the particulate nature of a local structure with

the friction-contact mechanism between particles. The local structure is identified with a periodic representative volume

element, or equivalently, a unit cell, over which averaging is performed. The mechanical behavior of unit cells is ana-

lyzed by a discrete numerical model, in which spring and friction devices connect rigid particles, whereas the continuum-

based finite element method is used for the macroscopic one. Representative numerical examples are presented to

demonstrate the capability of the proposed two-scale analysis method for granular materials.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Granular media such as sands and powders are regarded as composite materials that reveal fine scale

heterogeneities. The recognition common to their mathematical modeling is that the local region is occu-

pied by small particles, while it is identified with a material point in the overall structure. Since the materials
have such two-scale nature, the characterization of the mechanical behavior of granular media intrinsically

involves two distinct scales, namely micro- and macroscales, and invites two separate modeling approaches.

One of them is the macroscopic one that commonly leads to the construction of continuum-based pheno-

menological constitutive models. The other is the microscopic modeling that tries to capture the parti-

culate or discrete nature of a granular medium within the framework of micromechanics. The former can
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predict the mechanical behavior of an overall or global structure with reasonable reality, whereas the latter

is useful to characterize the macroscopic material behavior from the microscopic point of view.

Although the macroscopic modeling often enables us to simulate the overall responses of granular media

successfully, the aforementioned two-scale nature is central to the studies with the microscopic modeling as
in micromechanics, in which the macroscopic material characteristics are described by means of averaging

schemes. Some of them try to derive the analytical form of constitutive relations for granular media and

others make discussion with reference to the numerical solutions obtained from discrete numerical models.

There seem several theoretical studies that incorporate the microscale particulate mechanism into the

macroscopic stress–strain relationship (Emeriault et al., 1996; Liao et al., 2000; Nemat-Nasser, 2000).

Although these studies try to model the macroscopic stress–strain relationship by averaging the local

variables such as the velocity of each particle and the contact force, and by using the local constitutive law,

the complex deformation characteristics of granular media seems still far from being fully understood.
On the contrary, there have been many studies referring to numerical solutions, which can be obtained

by discrete numerical models. The distinct element method (DEM), which was proposed by Cundall and

Strack (1979), is one of the most popular discrete models. The DEM can be utilized to characterize the

macroscopic elastic–plastic mechanical behavior of a granular assembly, but is suited mainly for dynamic

motions. For the quasi-static equilibrium states of granular media, Kishino (1989) developed the granular

element method (GEM) to study the flow rule and the stability conditions for granular media: see also

Wren and Borja (1997) and Kuhn (1999) who utilized numerical methods similar to the GEM to study the

macroscopic constitutive laws for granular media.
From the engineering point of views, both the computational and theoretical studies would eventually

lead to the development of constitutive equations (macroscopic stress–strain relationships), and hopefully

provide the reasonable approximation of the material characteristics that possess the two-scale nature of

granular media. However, it is indeed a formidable task when the mathematical consistency is further

required within the framework of calculus of variations. Inevitably therefore, little attention has been given

to the global–local simulation for the boundary value problem of the overall continuum body with discrete

treatment of granular assemblies.

On the other hand, the mathematical theory of homogenization for heterogeneous media with periodic
microstructures enables us to realize the two-scale modeling, which consistently entails both micro- and

macroscales together with variational statements (see, e.g., Sanchez-Palencia, 1980; Lions, 1981; Benssousan

et al., 1978). Due to such consistency, the nonlinear mechanical behavior is easily incorporated into the

numerical analysis by the finite element method (FEM) (see, e.g., Swan and Cakmak, 1994; Ghosh and

Moorthy, 1995). Recently, Terada and Kikuchi (2001) have originally proposed the consistent two-scale

modeling for nonlinear problems by using the generalized convergence theorems in the nonlinear homo-

genization theory and developed the two-scale or global–local analysis method, which enables us to suc-

cessfully simulate the macroscopic inelastic behavior induced by the microscale structural responses. Such
capability can be attained neither by the theoretical counterparts nor the experimental studies. The modeling

strategy has not been applied to the characterization of mechanical behavior of granular media so far.

In this study, we propose a method of global–local analysis for granular materials with reference to

Terada and Kikuchi (2001). The problem can be formulated in terms of two distinct scales; macro- and

microscales. The former scale defines a global structure, the latter a local structure or equivalently a rep-

resentative volume element (RVE). The macroscopic field variables are simply calculated as the volume

average of the corresponding microscopic ones over the RVE and meet quasi-static equilibrium of an

overall structure. On the other hand, the particulate nature with friction-contact behavior is given to the
RVE in a microscale. The RVE is assumed to be periodic throughout the paper and is often rephrased as a

unit cell. Then, the derived two-scale boundary value problem allows us to analyze the microscale behavior

of unit cells by the GEM (Kishino, 1989), in which spring and friction devices connect rigid particles with

each other, while the macroscopic problem is solved by the continuum-based FEM.
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In Section 2, we pose the two-scale boundary value problem within the framework of homogenization.

Section 3 is devoted to the solution scheme of our proposed global–local analysis method, into which the

GEM is incorporated. We summarize the analysis procedure and provide the concrete numerical algorithm,

whereas the details of the GEM are worked out in Appendix A. In Section 4, we examine the characteristics
of the assemblies of particles (circular disks), and then present two representative numerical examples to

demonstrate the performance of the proposed global–local analysis method. One of them is a numerical

simulation of bi-axial compression tests for noncohesive granular media and the other is a bending test

simulation of a beam-like structure composed of cohesive particles. The intimate relationship between

the microscopic deformation mechanisms in unit cells and the macroscopic mechanical behavior is illus-

trated in a numerical manner. Then, we discuss the applicability of the proposed method as well as its

limitation.

2. Two-scale modeling of granular materials

We consider the quasi-static boundary value problem of a granular body shown in Fig. 1(a). The body is
regarded as an assembly of periodic arrangements of basic microstructural elements (called unit cells),

which are composed of a random distribution of elastic particles and voids (see Fig. 1(b)). It is assumed that

the problem can be defined in two-dimension (plane strain) and the particles are idealized to be circular. We

also assume that the size of a unit cell is small enough to the overall structure and is represented by a

normalized parameter e.

2.1. Variational formulation of friction-contact problem

Let Xe be an open domain of the granular body with smooth boundary oXe, and divided into three parts

as follows:

Xe ¼ Xe
P [ Xe

V [ Ce; ð1Þ

where Xe
P is an open domain of particles, Xe

V is an open domain of voids and Ce is the totality of the internal

surfaces associated with contact and friction. We also define partial open domain Xe
C by excluding Ce from

Xe, i.e. Xe
C ¼ Xe n Ce ¼ Xe

P [ Xe
V. Then, this problem is fully described by the equilibrium problem in Xe

C

with oXe and friction and contact conditions on Ce.

Fig. 1. A body composed of particles (circular disks): (a) macrostructure, (b) microstructure and (c) contact particles.
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The equilibrium equation for the stress reðxÞ in Xe
C and boundary conditions on ouX

e � oXe and

otX
e � oXe, which is an external surface of this body, are respectively given by

divreðxÞ þ beðxÞ ¼ 0 in Xe
C; ð2Þ

ue ¼ 0 on ouX
e and re � n ¼ t on otX

e; ð3Þ

where ue is the displacement vector, beðxÞ is the body force, t is the traction vector specified on otX
e with the

outward unit normal vector n. Here and in the subsequent sections, we indicate the dependency on the

microscopic heterogeneities by a superscript e on each variable. It is also assumed that individual particles

and voids reveal elasticity along with the following constitutive equation:

reðxÞ ¼ DeðxÞ : eeðxÞ; ð4Þ

where ee is an infinitesimal strain and De the elasticity tensor, which is symmetric and positive definite (it is 0

in the voids if the body is fully dry). The strain is related to the displacement by the following relationship

as usual:

eeðxÞ ¼ rðSÞue; ð5Þ

where rðSÞ is a gradient operator which produces a symmetric second-order tensor.

In order to provide the complete set of governing equations, we here define the friction and contact

conditions on Ce. Fig. 1(c) shows the illustration of these conditions on particle a, on which the outward
unit normal nC and the unit tangential vector tC are defined so that ðnC; tCÞ can be a set of base vectors for

the right-hand local coordinate system. Then, the displacement vector ue and the stress vector Te on Ce are

decomposed respectively into their normal and tangential components as follows:

ue ¼ ue
n; u

e
t

� �T
ue
n

�
¼ ue � nC; ue

t ¼ ue � tC
�
; ð6Þ

Te ¼ T e
n ; T

e
t

� �T
T e
n

�
¼ Te � nC; T e

t ¼ Te � tC
�
: ð7Þ

Using these components, we have the contact condition of Kuhn–Tucker form on Ce as


T e
n P 0; ½½ue

n��P 0; 
T e
n ½½ue

n�� ¼ 0 on Ce; ð8Þ

where ½½��� represents the jump of an argument �. Under the assumption that each contact region is small

enough, the stress vector Te can be constant there. Thus, the Coulomb�s friction law is introduced as


lT e
n þ cP jT e

t j on Ce; ð9Þ

where l and c are the friction coefficient and the cohesion, respectively.

The quasi-static boundary value problem for a granular medium, whose local structure is composed of

discrete particles, is completely described by the equilibrium equations (2)–(5) in Xe
C and the constraint

conditions (8) and (9) for contact and friction on Ce, respectively. Then, the problem is governed by the

following variational inequality (Kikuchi and Oden, 1988):

Find ue 2 KeðXe
CÞ : aðue; ve 
 ueÞ þ jðue; veÞ 
 jðue; ueÞP lðve 
 ueÞ; 8ve 2 KeðXe

CÞ; ð10Þ
where the bilinear form að�; �Þ represents the virtual work of the internal forces, the linear form lð�Þ that of
the external forces and jð�; �Þ that of the friction forces as

aðue; veÞ ¼
Z

Xe
C

rve : De : rue dx; ð11Þ
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lðveÞ ¼
Z
otXe

t � ve dsþ
Z

Xe
C

be � vedx; ð12Þ

jðue; veÞ ¼
Z
Ce

l T e
nðueÞ

�� �� ½½ve
t��

�� ��ds: ð13Þ

Here, we have defined the set of admissible displacement vectors ve as

KeðXe
CÞ ¼ ve j ve

i 2 VðXe
CÞ; ½½ve

n��
�

P 0 a:e: on Ce
�
: ð14Þ

This convex cone is actually a subset of the following space:

VeðXe
CÞ ¼ ve j ve

i 2 H 1ðXe
CÞ; ve

i

�
¼ 0 a:e: on otX

e
�
; ð15Þ

in which H 1ðXe
CÞ is the Sobolev space of order one.

2.2. Two-scale boundary value problem

A distinguished idea of the mathematical homogenization theory is the modeling with two distinct scales;

macro- and microscales, x and y, the latter of which is related to the former as y ¼ x=e. Due to the in-

troduction of these spatial scales, the domain Xe
C composed of particles and voids is divided into X mea-

sured by the macroscopic variable x and YC ¼ Y n C measured by the microscopic one y as follows (see
Fig. 2):

Xe
C ¼ X � YC ¼ ðx; yÞ j x 2 X � R2; y

�
¼ x=e 2 YC � R2

�
; ð16Þ

where Y is the microscopic domain and C is the contact region. With this decomposition, all the field

variables with superscript e are redefined as functions of two scale variables, x and y, as follows:

ueðxÞ ¼ uðx; yÞ; eeðxÞ ¼ eðx; yÞ; reðxÞ ¼ rðx; yÞ;
beðxÞ ¼ bðx; yÞ; DeðxÞ ¼ Dðx; yÞ;

�
ð17Þ

each of which is periodic with respect to y, i.e. Y -periodic.
It has been demonstrated in Terada and Kikuchi (2001) that the theory of two-scale convergence of

Allaire (1992) can be utilized in the derivation of the two-scale boundary value problem for a heterogeneous

Fig. 2. Decomposition to micro- and macrospace.
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solid with periodic microstructures. In this particular situation, the similar argument would hold for the

variational inequality (10) and the following formula can be obtained as a limit of the appropriate con-

vergence study:Z
X
rxðv0 
 u0Þ : Dh i : rxðu0Þdxþ

Z
X
hryðv1 
 u1Þ : Di : rxðu0Þdxþ

Z
X
rxðv0 
 u0Þ : hD : ryðu1Þidx

þ
Z

X
hryðv1 
 u1Þ : D : ryðu1Þidxþ

Z
C

l Tnðu1Þ
�� �� ½½v1t ���� ��ds
 Z

C
l Tnðu1Þ
�� �� ½½u1t ���� ��ds



Z

X
hbi � ðv0 
 u0Þdx


Z
otX

t � ðv0 
 u0ÞdsP 0; 8v0 2 V and 8v1 2 KYC ; ð18Þ

where h�i indicates the volume average over the unit cell domain Y , and rx and ry indicate the gradient

with respect to the macro- and microscales, respectively. Here, u0ðxÞ and v0ðxÞ are independent of the

microscopic heterogeneities and can be chosen from the following admissible functional space on X:

V ¼ v0ðxÞ j v0i 2 H 1ðXÞ; v0i
�

¼ 0 on ouX
�
: ð19Þ

On the other hand, the microscopic displacement (trial function) u1ðx; yÞ and its variation (test function)

v1ðx; yÞ are Y -periodic and regarded as elements of the subset KYC of linear space VYC , which are res-

pectively given by

VYC ¼ v1ðx; yÞ j v1i 2 H 1ðX
�

� YCÞ; Y -periodic
�
; ð20Þ

KYC ¼ v1ðx; yÞ j v1 2 VYC ; ½½v1n��
�

P 0 on C
�
: ð21Þ

Here, one can refer to Allaire (1992) for the relevant definition of two-scale spaces such as H 1ðX � YCÞ and
the corresponding convergence studies.

In inequality (18), the test function v1 can be chosen as v1 ¼ u1, while v0 can be chosen as v0 ¼ u0 þ aw0

(because V is a linear space) where w0 is an arbitrary function in V and a is an arbitrary real number.

Then, inequality (18) yields the following equality:Z
X
rxðw0Þ : D : rxðu0Þ

��
þryðu1Þ

�	
dx ¼

Z
X
hbi � w0 dxþ

Z
otX

t � w0 ds; 8w0 2 V: ð22Þ

On the other hand, in inequality (18), v0 can be set to v0 ¼ u0 and v1 to v1 ¼ u1 þ aw1. Here, w1 is an ar-

bitrary function in KYC and a is a real number, which is always positive, because the space KYC is a convex

cone in this particular setting. Then the variational inequality for u1ðx; yÞ in a unit cell yieldsZ
YC

ryðw1Þ : D : ryðu1Þdy þ
Z
C

l Tnðu1Þ
�� �� ½½w1

t ��
�� ��ds
 Z

C
l Tnðu1Þ
�� ��j½½u1t ��jds

P 

Z
YC

ryðw1Þ : Ddy

 �

: rxðu0Þ; 8w1 2 KYC ; ð23Þ

where the macroscopic deformation rxðu0Þ plays the role of constant excitation. Although the solution of

the variational inequality (23) is not unique in KYC , it can be unique on the restricted convex cone fKKYC

which is defined as (Sanchez-Palencia, 1980):

fKKYC ¼ v1ðx; yÞ j v1 2 KYC ; hv1i
�

¼ 0
�
: ð24Þ

The average behavior of the overall structure can be characterized by the solution of (22) under the
influence of microstructures whose mechanical behavior is characterized by (23). Consequently, the above

macroscopic problem has a solution as long as the microscopic problem has a solution, vice versa. These

4048 K. Kaneko et al. / International Journal of Solids and Structures 40 (2003) 4043–4069



micro- and macroscopic simultaneous equations govern the two-scale boundary value problem for a

granular medium.

2.3. Local (strong) form of the two-scale boundary value problem

The strong forms of the microscopic problem (23) can be identified with

divr0 ¼ 0 in YC; ð25Þ


Tn P 0; ½½u1n��P 0; 
Tn½½u1n�� ¼ 0


lTn þ cP jTtj



on C; ð26Þ

along with the constitutive equation in a microscale

r0ðx; yÞ ¼ D : rxu
0

�
þryu

1
�
¼ D : E

�
þryu

1
�
; ð27Þ

where we have defined the macroscopic strain E as

E ¼ rðSÞ
x ðu0Þ: ð28Þ

Thus, the actual microscopic displacement vector uðx; yÞ is expressed with the macroscopic (average) dis-

placement vector u0 and the Y -periodic microscopic one u1ðx; yÞ as
uðx; yÞ ¼ E � yþ u1ðx; yÞ: ð29Þ

On the other hand, Eq. (22) is equivalent to the local form of the macroscopic boundary value problem

as follows:

divR þ B ¼ 0 in X; ð30Þ

u0 ¼ 0 on ouX and R � n ¼ t on otX: ð31Þ

Here, R and B are the macroscopic stress and the body force, respectively, and are given by the volume

averages of the corresponding microscopic variables over a unit cell as

RðxÞ ¼ hr0ðx; yÞi ¼ hD : ðE þryu
1Þi; ð32Þ

BðxÞ ¼ hbðx; yÞi: ð33Þ

2.4. General algorithm for global–local computation

In our two-scale modeling based on the mathematical homogenization theory, the boundary value

problem for a granular medium is governed by both the macroscopic virtual work equation (22) and the

microscopic variational inequality (23). In particular, the Y -periodic microscopic displacement u1ðx; yÞ is a
solution under the constraint conditions associated with contact and friction. Thus, we note that the

governing equations in both scales are completely coupled, but can be solved independently by a sequential

solution scheme in each loading step. The general numerical algorithm to solve such two-scale boundary
value problems is proposed in Terada and Kikuchi (2001) and is summarized as follows:

(I) With initial macroscopic stress R, solve the macroscopic boundary value problem (22) for macro-

scopic displacement u0ðxÞ.
(II) Evaluate the macroscopic displacement gradient (the macroscopic strain) E ¼ rðSÞ

x ðu0Þ at all the

macroscopic sampling points.
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(III) Using each value of macroscopic strain E as an external force applied to a unit cell, solve the micro-

scopic problem governed by variational inequality (23) for Y -periodic microscopic displacement

u1ðx; yÞ.
(IV) Evaluate microscopic stress r0 from (27) with the values of u1ðx; yÞ and E.
(V) Compute the new state of macroscopic stress R by the averaging relation (32).

The processes (I)–(V) are repeated until (22) and (23) are satisfied simultaneously.

This numerical algorithm is general for the materials whose microstructure reveals nonlinearity. Both the

macroscopic virtual work equation (22) and the microscopic one can be solved by the continuum-based

FEM regardless of the mechanical nature of the microstructure. However, it is generally a tedious task to

solve (23) by using the FEM in the case of granular type media because of their discrete nature with friction

and contact. Therefore, we identify the physical model assumed in the above formulation, namely, the
microstructure composed of elastic particles and voids, with that composed of rigid circular particles,

spring elements and frictional devices. This type of physical models is widely used in the single-scale

analysis of granular media; e.g., the DEM (Cundall and Strack, 1979). In this paper, we employ the GEM

(Kishino, 1989), which can characterize the quasi-static mechanical behavior of an assembly of particles,

and work out the detailed formulation in Appendix A.

3. Solution scheme of global–local analysis for granular media

We here outline the solution scheme of the proposed global–local (or two-scale) analysis method for

granular media. After defining the macroscopic stress from the GEM context, we recast the discretized
version of the two-scale boundary value problems. Then, we summarize the analysis procedure and describe

the concrete numerical algorithm for the method.

3.1. Definition of the macroscopic stress in GEM for a unit cell

We consider a unit cell, which is composed of rigid particles (see Fig. 3(a)). In the analysis by the GEM,

the macroscopic (average) stress of this granular assembly is represented by the following relationship:

1

jY j

Z
Y

r0 dy ¼ R � 1

jY j
X
E

TE � yE; ð34Þ

where E is the set of contact points on the external boundary oYC of the unit cell, TE is the contact force

from an external particle to an internal particle, yE is the position vector of a contact point between the

~~

~ ~

y2

y1

yE

TE

unit cell

(b) 

εY
rigid circular particle

C

unit cell

(a) 

Fig. 3. Unit cell composed of particles: (a) unit cell and (b) force applied by exterior particles.
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internal and the external particles, and jY j is the volume of the unit cell (see Fig. 3(b) and Appendix A for

their precise expressions). This definition of average stress is well known in the area of micromechanics for

granular materials (see, e.g., Oda and Iwashita, 1999). Indeed, it is recognized that (34) provides a fairly

good approximation, though some approximation error is involved. Moreover, the macroscopic stress
given by (34) is always symmetric since all the particles within a unit cell satisfy the equilibrium condition

for the moment.

3.2. Discretized equations of the global–local boundary value problems

In our solution scheme, the macroscopic problem (22) is analyzed by the standard FEM. In this context,

the discretized macroscopic equation can be written as

fGðRÞg ¼ fFextg in X ½Macroscale problem� ð35Þ
where fFextg is the external nodal force vector and fGðRÞg is the internal nodal force vector as a function of
the macroscopic stress R, which is evaluated by (34) at each sampling point of an element. Here and in the

subsequent sections, the vector and matrix quantities are expressed with f�g and ½��, respectively.
On the other hand, the incremental form of the microscale stiffness equation, which corresponds to

(A.23) in Appendix A, can be written as follows, along with the constraint condition associated with

friction and contact in the GEM:

• microscopic stiffness equation

fDHg ¼ ½K �fDug in YC ½Microscale problem�; ð36Þ
• constraint conditions ((A.3), (A.4) and (A.6), in order)

½½uijn �� ¼ 0 on Cij 2 C ½contact condition�; ð37Þ

jT ij
t j6 
 T ij

n tan/ on Cij 2 C ½friction condition�; ð38Þ

T ij
n 6 
 cn

jT ij
t j6 
 T ij

n tan/ þ ct

�
on Cij 2 C ½cohesive condition�: ð39Þ

Here, fDHg is the increment of the external force vector generated by the macroscopic strain increment DE,
½K � is the overall stiffness matrix, and fDug is the increment of the overall generalized displacement vector

of particles; two translational and one rotational components. Also, ½½uijn �� is the normal component of the

relative displacement in-between particles i and j on a contact point Cij, and T ij
n and T ij

t are the normal and

tangential components of the contact force vector fT ijg on Cij, respectively. In addition, / is the friction

angle between two particles, and cn and ct are the normal and tangential components of the cohesion,

respectively.

Convergence of the iteration in our microscale analysis is achieved when all the particles in a unit cell

satisfy the following equilibrium condition, which is equivalent to (A.12):Xa

j¼1

½Rij� � fT ijg ¼ f0g in YC ði ¼ 1; . . . ; nÞ: ð40Þ

Here, n is the total number of particles in a unit cell, a is the number of particles in contact with particle i,
and ½Rij� is the coordinate transformation matrix on Cij, as is defined in (A.11). For the microscale analysis

in our global–local computations, it is assumed that this equilibrium equation is equivalent to the micro-
scale problem (25). For details of microscale equations (36)–(40) for the GEM see Appendix A or Kishino

(1989).
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3.3. Numerical algorithm for global–local computations

We here summarize the proposed global–local analysis method, which enables us to simulate the

macroscopic mechanical behavior of an overall structure whose microstructure is composed of particles
without any complicated constitutive equation for a continuum.

The fundamental concept of the developed global–local analysis method is illustrated in Fig. 4. Here, the

macroscale problem is solved by the continuum-based FEM, while the microscale problem is solved by

the GEM that provides the macroscopic stress (34). That is, the macroscopic stress is obtained by the

microscopic response of a single unit cell to the macroscopic deformation. Due to the nature of such two-

scale modeling, this method can be applied regardless of the scale of an overall structure.

Accordingly, the numerical algorithm is basically the same as that described in Section 2 except that the

incremental equilibrium states are considered, and that the microscale analysis for a unit cell is performed
by the GEM. The analysis flow is presented as follows:

II(I) With the values of R, solve the macroscopic boundary value problem (35) for the increment of mac-

roscopic displacement, Du0ðxÞ.
I(II) Calculate the increment of the macroscopic displacement gradient (the macroscopic strain)

DE ¼ rðSÞ
x ðDu0Þ at all the macroscopic sampling points.

(III) Using the increment DE ¼ rðSÞ
x ðDu0Þ as an external force, perform the microscale analyses for the unit

cells located at all the macroscopic sampling (integration) points.
ii(i) With the value of DE, calculate fDHðDEÞg.
i(ii) Solve the quasi-static stiffness equation of the granular assembly (36) for the increment of the

overall generalized displacement vector fDug.
(iii) With the value of fDug, compute the contact force increment between each particle, and update

all the coordinate transformation matrix ½Rij� and all the contact force vectors fT ijg.
(iv) Check whether or not the contact condition (37), the friction condition (38) and the cohesive con-

dition (39) are satisfied.

i(v) According to the results of (iv), correct the contact force fT ijg and check whether or not the equi-
librium condition (40) of all the particles is satisfied with corrected fT ijg and ½Rij�.

(vi) If this condition is not satisfied, go to (i) using the residual force instead of fDHðDEÞg.
(IV) Compute the new state of macroscopic stress R by the averaging relationship (34).

relative displacement

Σ

T ijiju[[ ]]

macroscopic strain E

contact force

macroscopic stress

Macro-scale problem of overall structure (macrostructure)
    eq. (35); FEM

localization

local constitutive law and friction-contact conditions

homogenization

Micro-scale problem of microstructure (unit cell)
                             eq. (36); GEM

Fig. 4. Concept of two-scale analysis method.
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The processes (I)–(IV) is repeated until the micro- and macroscopic equilibrium states are satisfied

simultaneously.

4. Representative numerical examples of global–local analyses

We present two representative numerical examples to demonstrate the performance of our proposed

method for global–local analyses. One of them is the global–local computation to simulate the bi-axial

compression tests of a plane specimen composed of noncohesive granular media. The other is a bending test

simulation, which illustrates the effect of cohesion and the irreversible response of an overall structure with

granular materials. Prior to these simulations, we first examine the qualification of assemblies of parti-

cles (circular disks) to characterize the macroscopic material behavior, which should not depend on the
dimensions of unit cells, or equivalently, on the number of particles in a single unit cell.

4.1. Qualification of assemblies of particles for RVE

The qualification of the assemblies of circular particles is examined for RVEs, by which the macroscopic

material behavior is evaluated. We first examine the influences of the size and the aspect ratio of unit cells

on the characteristics of initial particle arrangements and then on the macroscopic responses.

Unit cell models of 16 different dimensions are prepared and presented in Fig. 5, where the models in
Series A and B have aspect ratios of one and two, respectively. We use Model A100 with a dimension of

square region L0
1 � L0

2 in the figure as a reference, which contains 1600 particles that are randomly generated

in the square unit cell region Y ¼ L0
1 � L0

2. This reference model has the distribution of particle diameters

presented as shown in Fig. 6. The unit cells of all the other models are made smaller than the reference

model and their particle arrangements inherit it. In order to conduct the examination below, we introduce

the characteristic length as follows:

k ¼ L1 þ L2

L0
1 þ L0

2

; ð41Þ

A100
(a)

A090

A080

A070

A060

A050

A040

A030

A020

A010

A100
B070

B060

B050

B040

B030

B020

L2
0

L1
0

(b)

Fig. 5. Unit cell models of different dimensions: (a) Series A (aspect ratio¼ 1.0) and (b) Series B (aspect ratio¼ 2.0).
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where L1 and L2 are respectively the lengths in the y1- and y2-directions of each unit cell model. All the

models can be identified by this parameter; for example, Model A020 has k ¼ 0:20 in Series A, Model B050

has k ¼ 0:50 in Series B and so on.

Physical parameters are given as follows: the normal spring constant sn ¼ 5:0� 104 N/m, the tangential
one st ¼ 3:5� 104 N/m, the friction angle / ¼ 25� and the cohesions cn ¼ ct ¼ 0 MPa. We set up the initial

states of unit cell models with circular disks with confining pressure 0.2 MPa so that all the models have

almost the same void ratios.

From the geometrical viewpoint, the isotropy of the unit cell models can be examined by means of the

fabric tensor, which is defined as follows:

P ¼ 1

2M

Xn

i

Xa

j

nij � nij; ð42Þ

where M is the total number of contact points in the unit cell region Y , a is the total number of particles in

contact with particle i, n is the total number of particles in the unit cell, and nij is the outward unit normal of

particle i onto particle j (see, e.g., Oda and Iwashita, 1999, for this definition). The ratio of the principal

values, P1 and P2, of this tensor can be used to measure the extent of anisotropy. If the ratio is equal to

unity, i.e., P1=P2 ¼ 1, then the unit cell is said to be geometrically isotropic. Thus, the deviation from

isotropy can be parameterized as P1=P2 
 1 and is presented in Fig. 7. As can be seen from the figure, the

deviation from geometrical isotropy is at most 0.8% when the characteristic length k of unit cell is larger
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than 0.4, regardless of aspect ratios. We note here that the models with this value k ¼ 0:4 of characteristic

length are A040 and B040 and contain about 200 particles in the square region.

In order to examine the influence of the unit cells� dimensions on the macroscopic behavior, we conduct

the numerical simulations of the bi-axial tests for each unit cell by imposing the unit macroscopic strain that
has either of the following components:

EV ¼ n
1 0

0 0

� �
and EH ¼ n

0 0

0 1

� �
;

where n is the macroscopic loading parameter. Here, the subscripts, V and H, on variables are used to
indicate the correspondence to the macroscopically horizontal and vertical loading patterns. Also, we define

the following indicators to measure the error due to cell�s dimensions and the deviation from mechanical

isotropy:

Rdim ¼ jS0 
 Sj
S
0

; ð43Þ

Riso ¼ jSV 
 SHj
S

; ð44Þ

where

SI ¼
ffiffiffiffiffiffiffiffiffiffiffi
R : R

p
ðI ¼ V or HÞ; ð45Þ

S ¼ ðSV þ SHÞ=2: ð46Þ

Here, the S0 is the norm of the macroscopic stress for Model A100 and the error is evaluated relatively with

respect to S0.

When the parameter n becomes 0.01 and 0.03, we calculate these indicators to examine effects of the
dimensions of unit cells. Fig. 8 shows the error of the macroscopic stress values due to cells� dimensions and

their deviation from mechanical isotropy. Here, the errors and the deviations are relative with respect to

that of Model A100 as defined in (43) and (44). As can be seen from each figure, there is an abrupt decrease

of the relative error when the characteristic length is 0.3 or 0.4. Especially for the models in Series A, the

value at k ¼ 0:4 remains less than 5% and thus the unit cell of this characteristic length seems a qualified

RVE in evaluating the macroscopic material behavior. Also, even for the models of Series B, which have

aspect ratio of 2, the convergence is accomplished when the characteristic length increases. However, the

rate of convergence for the deviations from isotropy is slower than that of Series A. In other words, the
models of Series B exhibit the anisotropic mechanical behavior prominently as the loading parameter

becomes large. This is probably due to the fact that the difference of aspect ratios changes the arrangement

of particles differently during the deformation especially when the dimensions of unit cells are relatively

small. The confirmation of this conjecture is out of scope of this study, but should be realized in the near

future. Nonetheless, it can be expected that, in this particular development, the dimension of the charac-

teristic length at 0.4, which corresponds to the unit cell of about 200 particles, gives practically permissible

errors.

4.2. Bi-axial compression tests for noncohesive granular media

4.2.1. Analysis conditions

The finite element model of the macroscopic overall structure under consideration is shown in Fig. 9(a)

together with boundary conditions. Here, the displacements on the top and bottom surfaces of length L are
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fixed. The displacement at the top surface is controlled to compress the model for various values of con-

fining pressure; r0 ¼ 0:2, 0.3 and 0.4 MPa. On the other hand, the unit cell model for the microscale

granular element analysis is shown in Fig. 9(b), which has about 200 particles and has almost the same

characteristics of the distribution of particle diameters as those in Fig. 6. The physical parameters used in

the microscopic model are the same as that in Section 4.1.
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Fig. 8. Relative error of the macroscopic stress values with respect to that of Model A100 and their deviation from isotropy. Loading

parameter (a) n ¼ 0:01 and (b) n ¼ 0:03.
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Fig. 9. Macro- and microscopic analysis model: (a) overall macrostructure for FEM and (b) microstructure for GEM.
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Before providing the results, we define several physical quantities measured in the following numerical

experiments. First of all, the apparent stress and strain for specimens are defined as macroscopic quantities

just as those defined in experiments for soils and sands. For example, the axial stress is an apparent

quantity, which is evaluated as the nominal stress raxial ¼ P=L with P being the reaction force at the bottom
of the specimen. Thus, the deviator stress is defined as rdiv ¼ raxial 
 r0. The axial strain is also a macro-

scopic and apparent quantity defined as eaxial ¼ ðDH=H0Þ � 100 where DH is the height change of a speci-

men with initial height H0. In view of geotechnical applications, apparent volumetric change called

dilatancy is worth to be identified with the volumetric stain evol ¼ V =V0 
 1 where V0 ¼ LH0 is the initial

volume and V , which is calculated by adding the volume of all elements, is the one after deformation.

4.2.2. Macroscopic deformation characteristics

Fig. 10 shows the relationship between the apparent (macroscopic) deviator stress, rdiv, and the axial

strain, eaxial, for various values of confining pressure. As can be seen from this figure, the response is almost

linear at the very beginning of loading, and gradually reveals nonlinearity for all the cases. The figure also

presents the relationship between the dilatancy characteristics of the specimen and the axial strain. We can

see that the compressive loading makes the specimen dilate at the early stage of loading and reach the peak

of the curve. In addition, three different stress–strain curves illustrate the pressure dependent behavior,

which is known to be peculiar to granular materials. These results seem similar to the ones observed in

actual experiments such as tri-axial tests for sands. Note, however, that these measured quantities are
apparent ones as mentioned in the above and are not necessarily the same as actual field variables.

The process of the macroscopic deformation under confining pressure r0 ¼ 0:3 MPa is presented in Fig.

11, in which the slack-type deformation is well demonstrated as can be expected. Also, Fig. 12 shows the

distributions of the volumetric strain evol. Although the dilatancy observed in Fig. 10 is an apparent one for

the overall structure, the characteristics recognized from Fig. 12 show that the material itself reveals dila-

tancy around the center of the specimen when the axial strain reaches 2.0%. In the stage of 2.4% axial

strain, material points around the center of the specimen dilate about 0.5% though the overall structure is

compressed in the axial direction. This implies that the internal structure of the granular material, i.e., the
microstructure, increases its volume. Such behavior of unit cells results from the motion of particles with

frictional contact as can be seen later. Thus, the developed two-scale model can reflect the particulate

nature in unit cells and reproduce the typical macroscopic deformation characteristics such as the pressure

dependency and the dilatancy.

It is, however, difficult to estimate the overall strength of the specimen by the analysis. In this context,

Fig. 13 shows the distributions of the semi-norm of the deviator strain under bi-axis compression. As can be

seen from the figure, the shear-dominant deformation gradually concentrates around the center of the
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specimen and eventually appears to exhibit the preferable orientation of concentration. Although this is a

typical phenomenon observed in compression tests, our global–local computation cannot simulate the

formation of a macroscopic slip surface, which leads to overall collapse. In order to characterize such

(d) (c)  (b) 

2.5 cm

(a) 

Fig. 11. Macroscopic deformed configuration (initial stress 0.3 MPa). Axial strain (a) 1.2%, (b) 1.6%, (c) 2.0% and (d) 2.4%.

(%)

–0.5

0.5

(d) (c) (b)  (a)  

Fig. 12. Distribution of the volumetric strain (initial stress 0.3 MPa). Axial strain (a) 1.2%, (b) 1.6%, (c) 2.0% and (d) 2.4%.

(%)

0.0

7.0

(d)(c)  (b)  (a)  

Fig. 13. Distribution of the norm of the deviator strain (initial stress 0.3 MPa). Axial strain (a) 1.2%, (b) 1.6%, (c) 2.0% and (d) 2.4%.
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higher-order nonlinearity, we need to incorporate the nonlocal effects with our two-scale modeling. This

subject will be tackled in another opportunity.

4.2.3. Microscopic deformation characteristics

Fig. 14 presents the motion of particles in a unit cells located at macroscopic material points, A and B,

which are shown in Fig. 9(a). Here, Point A corresponds to the material point that undergoes large de-

formation and reveals the concentration of the macroscopic deviator strain, whereas the strain of Point B is

comparatively small. As can be seen from the figure, for the cell located at Point A, velocity vectors and
rotation rates become large with increasing total loads, though the rate of apparent axial strain of the

overall specimen remains constant. On the other hand, for Point B, there is little motion even after the peak

of the apparent stress (the apparent axial strain 2.4%).

Fig. 15 shows the distribution of the normal contact forces between particles, which represents the

microstructural characteristics, associated with macroscopic material points, A and B. Also, in this figure, a

line connecting one particle to another gives the contact force between these mutually connected particles

and its thickness represents the magnitude of the force. As can be seen from the figure, the normal contact

forces exhibit almost isotropic distribution at the initial state and have the same magnitudes for all material
points. This is probably due to the nearly isotropic state of macroscopic stress. In the cell located at Point

A, the anisotropic distribution of contact forces gradually evolves with increasing load and becomes the

most prominent when the apparent axial strain reaches 2.4% in this particular computation. This induced

anisotropic nature of the microscopic response is represented by the relatively thicker lines forming the

vertical lines and by the thin ones corresponding to the small forces in the horizontal direction. The vertical

direction of the transmission of contact forces coincides with that of the maximum principal axis of the

macroscopic apparent stress. As for Point B, the anisotropic distribution, which is similar to that in Point

A, was observed. However, the distribution of contact forces seems to remain unchanged throughout the
deformation process. Thus, the microstructural characteristics of the cells located at Points A and B differ

significantly when the axial strain is 2.4%, though they are similar to each other when the axial strain is

small, say 1.0%.

(b)(a)

Point A

Point B

axial strain 0.8 %—1.0 % axial strain 2.2 %—2.4 %

axial strain 0.8 %—1.0 % axial strain 2.2 %—2.4%

Point A

axial strain 0.8 %—1.0 % axial strain 2.2 %—2.4 %

axial strain 0.8 %—1.0 % axial strain 2.2 %—2.4%

Point B

Fig. 14. Motion of particles in unit cells located at Points A and B: (a) velocity of particles and (b) rotation rate of particles.
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As can be seen from these figures, the proposed global–local analysis method enables us to characterize
the mechanical behavior in unit cells that are located at macroscopic material points of the overall

structure. Although this feature would be helpful to understand the micro–macro coupling phenomena, we

decide to leave detailed and qualitative investigation of micro–macro coupling behavior to other oppor-

tunities because the main purpose of this paper is to propose the new two-scale or global–local analysis

method for granular media.

4.3. Bending test of cohesive granular material

In order to see the effect of cohesion, we simulate a bending test of a beam-like structure composed of

cohesive granular materials. The overall structure is bended by controlling displacement U at the right-

hand side surface. In the simulation, the unloading is also considered to demonstrate the irreversible

character of the deformation.
The finite element model of the macroscopic structure under consideration is shown in Fig. 16, and the

unit cell model is the same as that in Section 4.2 (Fig. 9(b)). Cohesion is given randomly to contact points so

that the average value is cn ¼ ct ¼ 0:1 MPa. To have the initial arrangement of particles, hydrostatic

Fig. 15. Distribution of normal contact force in unit cells located at Points A and B.
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pressure of 0.1 MPa is uniformly applied to the unit cell. After the resulting initial stress in the cell is re-

moved, the actual global–local analysis is performed. The other physical constants used in this simulation

are given as follows: the normal spring constant sn ¼ 1:0� 105 N/m, the corresponding tangential one

st ¼ 7:0� 104 N/m, the friction angle / ¼ 25�.
Fig. 17 shows the load versus displacement curve, in which the load parameter is defined as a norm of a

reaction force vector at the point C shown in Fig. 16. We can see that the curve tends to exhibit linearity up

to some level of macroscopic deformation in contrast to the case of noncohesive materials (see the result in

Section 4.2). This is due to the fact that the onset of the nonlinear response caused by slippage between

particles is delayed by the presence of cohesion. For the nonlinear response, this curve exhibits a jagged

response or, equivalently, loses its smoothness. This is definitely caused by the loss of cohesion between

particles in unit cells. When load parameter returns to zero, the irreversible characteristics of deformation

can be observed, though the macroscopic load decreases almost linearly. Note, however, that any macro-
scopic constitutive model has not been introduced in this simulation.

Fig. 18 shows the distribution of the semi-norm of the deviator strain and stress with deformed con-

figurations at loading steps (1)–(4) shown in Fig. 17. In Steps (1) and (2), the large deviator strain con-

centrates near the top and bottom surface of left-hand side of the specimen, while the deviator stress

concentrates only near bottom surfaces. This nonsymmetric deformation about the axis of this beam-like

structure indicates the difference of the responses to tensile and compressive loadings. Then, even in the

final loading step (Step (4)), in which the load parameter set to zero, the heterogeneous residual stress and

deviator strain remains in the specimen.
Fig. 19 shows the distribution of microcracks in the unit cells located at Points A and B given in Fig. 16,

which results from the loss of cohesion between particles. This microscopic behavior causes the jagged

curve given in Fig. 17 for the overall structure as well as the nonsymmetric response observed in Fig. 18.

Although both Points A and B have high macroscopic strain values in Fig. 18, the former is under com-

pression and the latter is under tension macroscopically. In Steps (1) and (2), many microcracks were
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Fig. 16. Macroscopic structure under bending.
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generated, while few microcracks are generated in Steps (2)–(4). Also, the unit cell located at Point B has
more microcracks than that at Point A. Furthermore, many microcracks for Point A exhibit the opening

due to tensile rupture between particles, though microcracks due to shear at contact points are predomi-

nant.

(a)

0.0 0.6 (%)

loading step (1)

loading step (4)

loading step (3)

loading step (2)

(b)

0.0 0.3 (MPa)

loading step (1)

loading step (4)

loading step (3)

loading step (2)

Fig. 18. Distribution of macroscopic strain and stress with deformed mesh. Norm of (a) deviator strain and (b) deviator stress.

Point A

loading step (1)

loading step (4)loading step (3)

loading step (2)

Point B

loading step (2)loading step (1)

loading step (4)loading step (3)

Fig. 19. Distribution of microcracks.
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By taking the cohesion between particles into consideration, we can simulate the peculiar macroscopic

deformation characteristics resulting from the generation of microcracks in the microstructure.

5. Concluding remarks

Tremendous amounts of research have been made on the modeling of the macroscopic or phenome-

nological constitutive laws for granular media. Some of them are incorporated with the microscale

mechanism of particle motion with reference to micromechanics. However, such prior attempts have been

inconclusive. In this context, the multiple scale modeling have been receiving increasing attention in both

theoretical and computational mechanics. The two-scale modeling employed in this paper is based on the
mathematical homogenization theory for quasi-static equilibrium problems for granular media.

In the proposed global–local analysis method, we prepare the geometrical and physical information

about the microstructures that can reproduce the macroscale material response after averaging the micro-

scale structural responses. Therefore, it is not necessary to have a priori the knowledge of the macroscopic

or phenomenological material behavior that is usually given as a constitutive law. Such a way of thinking is

applicable to various kinds of heterogeneous media. One of the typical applications is the present devel-

opment for granular media. In the area of computational mechanics, this study must have been the first trial

to incorporate the microscopic particulate nature into the global–local computations.
Nonetheless, there are some difficulties in modeling the higher order nonlinearities such as nonlocal

effects of deformation. For example, the proposed method cannot simulate the formation of macroscale slip

lines or so-called shear bands caused by macroscopic strain localization. The theoretical and algorithmic

developments for simulating such peculiar mechanical behavior should be one of our future studies.

Appendix A. Granular element method for microscale problems

We review the formulation of the GEM with reference to Kishino (1989), which would provide the

equivalent solution for microscopic problem (23). After providing the constitutive equation with constraint

conditions and the equilibrium equation of a single particle, we derive the equilibrium equation with the

periodic boundary conditions for unit cells (granular assembly). For our notational convenience to describe

the GEM, all the tensor quantities are represented in vector or matrix forms expressed by f�g or ½��.

A.1. Constitutive relation for particle contacts

We first introduce the constitutive equation and the constraint conditions for particle contacts. Let rigid

circular particles i and j be in contact with each other on contact point Cij. The unit normal vector of

particle i toward particle j on Cij and the corresponding tangent one are respectively given by

nij ¼ yj 
 yi

jyj 
 yij and tij ¼ 
nij2
nij1

� 

; ðA:1Þ

where yi and yj are the position vectors of the center points of these particles. The kinetic variable on Cij is

the contact force fT ijg ¼ fT ij
n ; T

ij
t gT, whereas the kinematic variable associated with fT ijg in the constitutive

equation is the relative displacement f½½uij��g ¼ f½½uijn ��; ½½u
ij
t ��gT between two particles. Here, subscripts n and

t respectively represent the normal and tangential components of variables, which refer to the local co-

ordinate system whose base vectors are fnijg :¼ nij and ftijg :¼ tij.
In the GEM, the elastic characteristics of a continuum are replaced by those of the spring devices

at contact points. We employ the normal and tangential spring devices on contact point Cij as shown in
Fig. 20(a). Then, we have the following simple linear relationship between fT ijg and f½½uij��g:
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fT ijg ¼ ½S� ½½uij��f g; ðA:2Þ

where ½S� is the elastic modulus matrix given as

½S� ¼ sn 0

0 st

� �
:

Here, sn and st are the elastic constants in the normal and tangential directions, respectively.

Remark A.1. According to the Hertz�s contact theory with respect to the normal direction and Mindlin�s
theory with respect to the tangential one (see, e.g., Mindlin, 1949; Johnson, 1985; Oda and Iwashita, 1999),

the elastic moduli are not constant on a contact area, which is actually a point in our modeling. However,

since the elastic constants sn and st are sufficiently stiff, ½½uijn �� must be small enough. Thus, the above linear

constitutive law (A.2) would be a relevant approximation.

In order to express the slip between particles, we set up the frictional contact device as illustrated in

Fig. 20(a). Then the contact condition on Cij is expressed as

½½uijn �� ¼ 0: ðA:3Þ

When this condition does not hold, we set zero to the contact force vector. Also, the friction condition

between particles has been given in (9) and is rewritten as

jT ij
t j6 
 T ij

n tan/; ðA:4Þ

which is known as the Mohr–Coulomb�s friction condition. If the tangential component of the contact force

violates this condition, we correct it compulsively to the following limit value:

T 0ij
t ¼ signðT ij

t Þð
T ij
n tan/Þ; ðA:5Þ

where / is the friction angle on Cij and signð�Þ provides the sign of a scalar quantity �.
Although original GEM can simulate only dry granular materials, we here introduce the cohesive

condition for cohesive granular materials such as rocks and stones. In this study, we employ the tension-

cutoff device that resists to tensile forces to some extent and assume the following cohesive conditions:

T ij
n 6 
 cn;

jT ij
t j6 
 T ij

n tan/ þ ct;

�
ðA:6Þ

where cn and ct are the normal and tangential component of cohesion, respectively. In other words, they are

normal and tangential contact strength. This contact model is called bonded-particle model and well used

spring device

rigid circular particle

tension-cutoff device
friction contact device

Tn

[[un]]1
sn

(compression)

(tension)

(tension)

cn :  normal contact strength

(compression)

(a) (b) 

normal direction

|Tt|

|[[ut]]|
1

st

tangential direction

Tn tanφ+ct 

Tn tanφ

Fig. 20. Illustration of the constitutive relation for particle contacts. (a) Illustration of the constitutive model and (b) constitutive

behavior for a contact point.
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to the simulation of rocks (see, e.g., Hazzard and Young, 2000). When the normal cohesive condition is not

satisfied, we set zero to the contact force vector, cn and ct compulsively. When the tangential cohesive

condition is not satisfied, cn and ct are set to zero. The contact behavior in GEM is summarized in Fig.

20(b).

A.2. Equilibrium equation of a particle

Let us consider the quasi-static equilibrium of a single particle i whose radii is given by ri as shown in

Fig. 21. The translational equilibrium for particle i is given byXa

j¼1

fF ijg ¼ f0g; ðA:7Þ

where fF ijg is the translational force exerted on i by any particle j, which is in contact with i on a contact

point Cij, and a is the total number of particles in contact with i. The rotational equilibrium of particle i
takes the formXa

j¼1

Mij ¼ 0; ðA:8Þ

where Mij is the moment of a contact force exerted by j. The equilibrium equations (A.7) and (A.8) can be
combined asXa

j¼1

ff ijg ¼ f0g; ff ijg ¼ F ij
1 ; F

ij
2 ;M

ij=ri
� �T

; ðA:9Þ

where ff ijg is the generalized force vector for a single contact point Cij.

The generalized force vector ff ijg defined in Cartesian axis y1, y2, are related to the contact force vector

fT ijg through the coordinate transformation matrix ½Rij� via
ff ijg ¼ ½Rij�fT ijg: ðA:10Þ

Here, the components of ½Rij� are given by

½Rij� ¼
nij1 
nij2
nij2 nij1
0 1

2
4

3
5: ðA:11Þ

(a) 

particle j

y1

yi

r i

r j

y2

tij
nij

particle i

total coordinate system

local coordinate system

(b)

M i

F2
i

F1
i

Tij
Tt

ij

Tn
ij

particle i

particle j

Cijcontact point

Fig. 21. Coordinate systems and kinetic variables: (a) total and local coordinate systems and (b) contact forces and generalized forces.
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Using Eq. (A.10), we can rewrite the equilibrium equation (A.9) for particle i as follows:

Xa

j¼1

½Rij�fT ijgð Þ ¼ f0g: ðA:12Þ

Since the motion of each particle is constrained from friction and contact on contact point Cij, the

microscopic analysis is always nonlinear. Thus, we replace the quasi-static equilibrium equation (A.12) by

the rate form as

Xa

j¼1

ð½Rij�f _TT ijgÞ ¼ f0g: ðA:13Þ

The kinematic variables of the particle motion are the translational displacements, ui1 and ui2, and the
rotation xi of particle i. Putting them into a generalized element displacement vector such that

fuig ¼ fui1; ui2; rixigT, we shall use their rates to be consistent with rate form (A.13). Then, the relationship

between the relative velocity f½½ _uuij��g on Cij and the generalized element velocities f _uuig and f _uujg are given as

follows:

½½ _uuij��
n o

¼ 
½Rij�Tf _uuig þ ½R̂Rij�Tf _uujg; ðA:14Þ

where

½R̂Rij� ¼
nij1 
nij2
nij2 nij1
0 
1

2
4

3
5:

Finally, using the linear constitutive law (A.2) and the generalized velocity–relative velocity relation

(A.14), we can rewrite the rate form of the equilibrium equation (A.13) for particle i as follows:

Xa

j¼1

ð½Rij�fT ijgÞ ¼ ½kii�f _uuig 

Xa

j¼1

ð½k̂kij�f _uujgÞ ¼ f0g; ðA:15Þ

where

½kii� ¼
Xa

j¼1

½Rij�½S�½Rij�T
� �

and ½k̂kij� ¼ ½Rij�½S�½R̂Rij�T:

A.3. Treatment of periodic boundary condition

We here introduce the periodic boundary condition to the GEM formulation. Fig. 22 schematically

shows the periodicity of a unit cell with respect to adjacent cells. Here, due to the periodicity, particle �ii in
one of the adjacent cells is identified with particle i in this unit cell. We call this particle i the master particle
whereas �ii the slave particle. The microscopic displacement vectors of these particles are respectively

expressed as follows:

fuig ¼ ½E�fyig þ fui1g; ðA:16Þ

fu�iig ¼ ½E�fy�iig þ fu�ii1g; ðA:17Þ
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each of which is equivalent to (29). Here, ½E� :¼ E is the macroscopic (average) strain matrix, and fui1g and

fu�ii1g are the Y -periodic displacement vectors of i and �ii, respectively. Then the periodic boundary condition

is expressed as

fui1g ¼ fu�ii1g: ðA:18Þ
Subtracting (A.16) from (A.17) with (A.18), we have

fu�iig ¼ fuig þ ½E�ðfy�iig 
 fyigÞ: ðA:19Þ

If master particle i is in contact with a particles containing �aa slave particles, the last term in the left-hand

side of the equilibrium equation (A.15) for master particle i is divided into the parts about the master

particles and slave ones and Eq. (A.15) yields

½kii�f _uuig 

Xa
�aa

j¼1

ð½k̂kij�f _uujgÞ 

Xa

j¼1þa
�aa

ð½k̂ki�jj�f _uu�jjgÞ ¼ f0g; ðA:20Þ

in which the last term in the left-hand side is due to the periodicity constraint for particle i with respect to

slave particles. Here, ½kii� is rewritten as following expression:

½kii� ¼
Xa
�aa

j¼1

½Rij�½S�½Rij�T
� �

þ
Xa

j¼1þa
�aa

½Ri�jj�½S�½Ri�jj�T
� �

:

Then, by substituting the rate forms of (A.19) into the last term in the left-hand side in (A.20) with some
algebraic manipulations, we arrive at the following equilibrium equation for a single particle i with the

periodicity constraint associated with slave particles:

f _HHig ¼ ½kii�f _uuig 

Xa
�aa

j¼1

ð½k̂kij�f _uujgÞ 

Xa

j¼1þa
�aa

ð½k̂ki�jj�f _uujgÞ ¼ ½Ki�f _uuijg; ðA:21Þ

where the components of the element stiffness matrix ½Ki� and the displacement vector f _uuijg is given by

½Ki� ¼ ½kii� 
½k̂ki1� � � � 
½k̂ki�jj� � � � 
½k̂ki�aa�
h i

;

f _uuijg ¼ f _uuigT; f _uu1gT; . . . ; f _uujgT; . . . ; f _uuagT
n oT

:

master particle i

slave particle i y2

y1

unit cell

slave particle j

Fig. 22. Master and slave particles for periodic motion.
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And, here, we have defined the vector of external forces as

f _HHig ¼ ½ _EE�
Xa

j¼1þa
�aa

½k̂ki�jj�ðfy�jjg 
 fyjgÞ: ðA:22Þ

Finally, if there are n particles in the unit cell, we define the overall external force vector and the overall

generalized velocity vector for all the particles as

f _HHg ¼ f _HH 1gT; . . . ; f _HHigT; . . . ; f _HHjgT; . . . ; f _HHngT
n oT

;

f _uug ¼ f _uu1gT; . . . ; f _uuigT; . . . ; f _uujgT; . . . ; f _uungT
n oT

:

Then, by piling up the equilibrium equations (A.21) according to the order of f _uug for all the particles within
a unit cell except for the slave particles, which enjoy the periodicity constraints, we have the rate form of the

equilibrium equation for the unit cell as

f _HHg ¼ ½K�f _uug; ðA:23Þ

which should be solved for the overall generalized velocity vector f _uug, where ½K� is the overall stiffness
matrix, which consists of the element stiffness ½Ki� of all the particles with reference to the order of f _uug. The
components of ½K� is given by

½K� ¼

½k11� � � � 
½k̂k1i� � � � 
½k̂k1�jj� � � � 
½k̂k1n�

� � � . .
.

� � � � � � � � � � � � � � �

½k̂ki1� � � � ½kii� � � � 
½k̂kij� � � � 
½k̂kin�

� � � � � � � � � . .
.

� � � � � � � � �

½k̂kj�11� � � � 
½k̂kji� � � � ½kjj� � � � 
½k̂kjn�

� � � � � � � � � � � � � � � . .
.

� � �

½k̂kn1� � � � 
½k̂kni� � � � 
½k̂knj� � � � ½knn�

2
6666666666664

3
7777777777775
:

We here note that the nondiagonal block 
½k̂kij� should be a zero-matrix if particles i and j do not contact

with each other.
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